Vibration Spectra and Rotational Isomerism of Chain Molecules. I. Methyl Propyl Ether, Ethyl Propyl Ether, and Butyl Methyl Ether

Takehiko Shimanouchi, Yoshiki Ogawa, Masahiro Ohta, Hiroatsu Matsuura, and Issei Harada

Department of Chemistry, Faculty of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 (Received June 18, 1976)

The Raman and infrared spectra of methyl propyl ether, ethyl propyl ether, and butyl methyl ether were measured for the gaseous, liquid, glassy and crystalline states. The normal vibration frequencies were calculated, a consistent set of force constants explaining the frequencies of basic aliphatic ethers being assumed. The rotational isomerism was studied and the following conclusions were obtained. (1) Only the all-trans form exists in the crystalline state. (2) Another form which takes the gauche conformation about the OC-CC axis and the trans conformation about the CC-CC and CO-CC axes exists in the glassy state. (3) Other forms also exist in the liquid state. These results confirmed that the repulsive force between nonbonded hydrogen atoms was one of the important factors influencing the stability of molecular conformations. The stable conformations of the ether molecules were correlated with those of polyether chains.

The existence of rotational isomers has been clearly shown from the observation of Raman spectral changes on crystallization of 1,2-dichloroethane¹⁾ and the rotational isomerism of small molecules has been studied in detail for various compounds.²⁻⁴⁾ The quantum mechanical treatment has also shown that the approximation of rotational isomerism can be practically applied.⁵⁾

The rotational isomers of longer chain molecules have not yet been fully explored, since infrared and Raman spectra show too many bands to be assigned to each of possible rotational isomers. Recently we succeeded in estimating the force constants of chain molecules consisting of the CH₃, CH₂, O, S, F, Cl, Br, and I units and in calculating the vibrational frequencies of possible rotational isomers accurately enough to give reliable band assignments for longer chain molecules.⁶)

This procedure provides us with a reliable method of determining the rotational isomers existing in the solid, liquid and other states. Accordingly, we started a series of research in which the rotational isomerism of longer chain molecules was studied. This paper is the first of this series and deals with the isomerism of methyl propyl ether CH₃OCH₂CH₂CH₂CH₃, ethyl propyl ether CH₃CH₂CH₂CH₂CH₃ and butyl methyl ether CH₃OCH₂CH₂CH₂CH₃ and the results are correlated with those of other ethers⁷⁻¹¹) and the stable conformations of polyether chains. ^{12,13})

Notation

The conformation of a chain molecule is expressed with respect to the backbone axes and the symbols c, g^+ , s^+ , t, s^- , and g^- are used for the approximate internal-rotation angles of 0, 60, 120, 180, 240, and 300°, respectively, 3,14,15) where c, g, s, and t are the abbreviations of cis, gauche, skew, and trans. For saturated compounds, t, g^+ , and g^- are stable. 2,4,16) In this series of papers, we use the generic symbols T, G, and G' to represent the conformation of rotational isomers, since some of the molecular conformations expressed by t, g^+ and g^- are indistinguishable by vibrational spectroscopy. The symbol T corresponds simply to t, and G and G' correspond to one and the other of g^+ and g^- . Thus, for example, g^+g^+ and g^-g^- are represented

generically as GG, and g^+g^- and g^-g^+ as GG'. The conformations of longer chain molecules are defined by arranging the conformation symbols, T, G, and G'. Table 1 shows the generic names for accessible rotational isomers of the molecules which are studied in this series of papers.

Experimental

Samples of methyl propyl ether, ethyl propyl ether, and butyl methyl ether were purchased from Tokyo Kasei Kogyo Co., Ltd. and were distilled prior to the measurements. The Raman and infrared spectra were measured for the gaseous, liquid, glassy and crystalline states.

The Raman spectra were recorded on a JEOL JRS-400D spectrophotometer with a Coherent Radiation CR-3 argon ion laser in the region below 1600 cm⁻¹. A multireflection accessory and a gas cell with a heater were used for the measurements of the spectra in the gaseous state. The Raman spectra in the liquid state were measured at room and lower temperatures. The glassy state was obtained by putting into liquid nitrogen the sample enclosed in an ampoule and cooling it rapidly, and the crystalline state by inserting a copper wire in the sample and cooling it slowly with liquid nitrogen.

The infrared spectra were recorded on a Hitachi EPI-G2 double beam grating spectrometer in the region 1600—400 cm⁻¹ and on a Hitachi EPI-L double beam grating spectrometer in the region 700—250 cm⁻¹. For the measurements in the region 700—250 cm⁻¹, the spectrometer was flushed with dry air to get rid of the interference of water vapor absorptions. The spectra in the gaseous state were measured with a 10 cm gas cell with KBr windows in the region 1600—400 cm⁻¹. For the measurements of the spectra in the liquid state, a 0.025 mm fixed cell with KBr windows and a variable cell with KRS-5 windows were used. The infrared spectra in the glassy and crystalline states were measured by the method previously reported.¹⁷⁾

Normal Coordinate Treatment

The normal coordinate treatment of the unbranched ethers (see Table 2) was carried out with a computer program NCTB2⁶ and a HITAC 8700/8800 computer system at the Computer Center of the University of Tokyo. The calculation made it possible to assign the observed Raman and infrared bands to individual rotational isomers and to determine a consistent set of

TABLE 1. GENERIC NAMES OF ROTATIONAL ISOMERS

Molecule ^{a)}	Generic name	Conformations
$\mathrm{CH_{3}CH_{2}CH_{2}}X$	T	t
$X ext{CH}_2 ext{-CH}_2X \ X ext{CH}_2 ext{-CH}_2Y \ ext{CH}_3 ext{-CH}_2 ext{CH}_3$	G	g ⁺ , g ⁻
CH ₃ CH ₂ -Z-CH ₂ CH ₃	TT	tt
XCH_2 - CH_2 - CH_2X	TG	tg^+, tg^-, g^+t, g^-t
110112-01121	GG	g+g+, g-g-
	GG′	g+g-, g-g+
$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}}X$	TT	tt
XCH ₂ -CH ₂ -CH ₂ Y	TG	tg^+, tg^-
$CH_3W-CH_2-CH_2CH_3$	GT	g^+t , g^-t
$CH_3W-CH_2-CH_2X$	GG	g+g+, g-g-
0113,7, 0112 011211	GG′	g+g-, g-g+
$X\mathrm{CH_2-CH_2-CH_2-CH_2}X$	TTT	ttt
$CH_3Z-CH_2-CH_2-CH_3$	TTG	$ttg^+, ttg^-, g^+tt, g^-tt$
	TGT	tg^+ , tg^-t
	TGG	$tg^+g^+, tg^-g^-, g^+g^+t, g^-g^-t$
	GTG	g+tg+, g-tg-
	TGG′	tg+g-, tg-g+, g+g-t, g-g+t
	GTG'	g+tg-, g-tg+
	GGG	g+g+g+, g-g-g-
	GGG'	g+g+g-, g-g-g+, g+g-g-, g-g+g+
	GG′G	g+g-g+, g-g+g-
$\mathrm{CH_3CH_2} ext{-}\mathrm{CH_2} ext{-}\mathrm{CH_2} ext{-}\mathrm{CH_2}X$	TTT	ttt
XCH ₂ -CH ₂ -CH ₂ -CH ₂ Y	TTG	ttg+, ttg-
$CH_3CH_2-W-CH_2-CH_2CH_3$	TGT	tg^+t , tg^-t
$CH_3W-CH_2-CH_2-CH_2CH_3$	GTT	g^+tt , g^-tt
CH ₃ O-CH ₂ -CH ₂ -SCH ₃	TGG	tg+g+, tg-g-
0 1 1	GTG	g^+tg^+, g^-tg^-
	GGT	g^+g^+t , g^-g^-t
	TGG'	tg^+g^-, tg^-g^+
	GTG'	$g^+tg^-,\ g^-tg^+$
	GG'T	g^+g^-t , g^-g^+t
	GGG	$g^+g^+g^+, g^-g^-g^-$
	GGG'	$g^+g^+g^-, g^-g^-g^+$
	GG'G	$g^+g^-g^+, g^-g^+g^-$
	GG'G'	$g^{+}g^{-}g^{-}, g^{-}g^{+}e^{+}$

a) X, Y=F, Cl, Br, or I; $Z=CH_2$, O, or S; W=O or S.

force constants of ethers. Structural parameters and symmetry coordinates used in the calculation and a final set of the force constants are reported in a separate paper.⁶⁾

The force constants of the ethers were determined in the following way. The force constants associated with a methyl or methylene group which is not bound directly to an oxygen atom were assumed to be the same as those for the paraffin molecules. The force constants associated with the ether group, including those of neighboring methyl and methylene groups, were refined in the least-squares adjustment with initial values transferred from the results by Shimanouchi et al., Snyder and Zerbi, and Matsuura and Miyazawa. Some of the ether force constants, which were unestimable from the observed frequencies, were assumed to have the same values as those for the corresponding paraffin force constants.

Table 2 shows the procedure of the least-squares

calculation. The calculation began with the simplest ethers in the extended form, and then the molecules to be treated were extended to the longer ethers and the non-extended forms. The various deuterated derivatives of ethyl methyl ether and diethyl ether were also included in the force constants refinement. A total of 83 force constants associated with the ether group were determined from 690 Raman and infrared frequencies of 46 forms of 19 molecular species.

Results

Figures 1—9 show the Raman and infrared spectra in the gaseous, liquid, glassy and crystalline states. The observed frequencies and the assignment based on the calculated potential-energy distributions are listed in Tables 3—5. The observed spectra were analyzed with reference to the results of the normal coordinate treatment.

Table 2. Procedure of the least-squares calculation

Step	$\mathrm{CH_3OC_2H_5^{a)}}$	$\mathrm{C_2H_5OC_2H_5^{b)}}$	$\mathrm{CH_3OC_3H_7^{c)}}$	$\mathrm{C_2H_5OC_3H_7^{c)}}$	$CH_3OC_4H_9^{c)}$	CH ₃ OC ₂ H ₄ OCH ₃ ^{d)}				
1	T(22)	TT(27)								
2			TT(27)	TTT(33)	TTT(31)					
3	G(10)	TG(8)		•	, ,					
4			TG(14)	TTG(17)	TGT(18)					
5			GT(5)	TGT(8)	TTG(9)					
			GG (7)	TGG(4)	GTT(5)					
				GTG(4)	GTG(6)					
6						TGT(29)				
						TTT(10)				
7						TGG(15)				
						TTG(12)				
8	8 $CD_3OC_2H_5^{e)} T(22) G(7)$			CH₃OCHDCI	$H_{3}^{f)} T(20) G(5)$					
	CH_3OCD_2	$CH_3^{g)} T(21) G($	7)	CH ₃ OCH ₂ CD	$_{3}^{e)}$ T(21) G(6)					
	CD_3OCH_2	$CD_3^{f)} T(19) G($	5)	CD ₃ OCHDCI	$O_3^{f)} T(21) G(4)$					
	CH_3OC_2D	$_{5}^{e)}$ T(22) G(5)								
	$CD_3CH_2OCH_2CD_3^{h}$ $TT(25)$ $TG(12)$			$CH_3CD_2OCD_2CH_3^{h_1}TT(25)TG(13)$						
	$\mathrm{C_2D_5OC_2D}$	O ₅ i) TT(24) TG(8)	$C_2H_5OC_2D_5^{J_3}$ TT(22) TG(5)						
9	(-OCH ₂ Cl	$H_2-)_n^{k)} TGT (30)$))	$(-OCD_2CD_2-)_n^{j_j}$ TGT (20)						

The least-squares calculation begins with the simplest ethers given in the first step and the first set of orce constants is determined so as to give the best fit between the observed and calculated frequencies. This set of force constants gives the definite vibrational assignments of the ethers given in the second step and the second set of force constants is subsequently determined from the observed frequencies in this step in addition to those in the first step. By repeating this procedure, the final set of force constants is obtained. The figures in parentheses give the numbers of observed frequencies used for the least-squares calculation.

The observed frequencies of the CH and CD stretching vibrations are not included in the calculation and accordingly the force constants associated with these vibrations are not refined.

a) Refs. 7, 10a, 10b, 11, and 21. b) Refs. 7, 9, 10b, 10c, and 22. c) This study. d) This study and Ref. 7. e) Refs. 10a, 10b, and 11. f) Refs. 10a and 10b. g) Refs. 10a and 11b. h) Refs. 9 and 10c. i) Refs. 9, 10b, and 10c. j) Refs. 10b and 10c. k) Refs. 12, 13, 24, and 25. 1) Ref. 13.

The following spectral features are observed for the three ethers in common. (1) The spectra in the various states are distinctly different, especially in the 600-200 cm⁻¹ region of the skeletal deformation and torsional vibrations and in the 1200-800 cm⁻¹ region of the skeletal stretching and the methyl and methylene rocking vibrations. (2) The spectral pattern of the crystalline state is the simplest and the smallest number of bands (3) In the glassy state, more bands is observed. appear in addition to those which persist in the crystalline state. (4) The liquid-state spectra have further more As temperature is lowered, the intensities of the additional bands decrease rapidly relative to those of the bands which persist in the glassy state. (5) The gaseous-state spectra are essentially the same as the corresponding liquid-state spectra at room temperature.

In the following subsections, the rotational isomerism of the individual ethers is described.

Methyl Propyl Ether. Since this molecule has two internal-rotation axes associated with the rotational isomerism, there are five possible isomers, TT, TG, GT, GG, and GG', as given in Table 1. The observed and calculated frequencies in the 600—250 cm⁻¹ region are compared in Fig. 3.

The spectra in the crystalline state show that only the TT form exists. The number of the observed bands is just what is expected for one form. The frequencies, especially in the region below 600 cm⁻¹, can only be explained by the TT form.

The glassy-state spectra show that the TT and TG forms coexist. The bands at 506, 357, and 308 cm⁻¹ which appear newly in the glassy state can only be explained by the TG form.

In the liquid and gaseous states, the observed spectra are explained by the coexistence of the TT, TG, GT and GG forms. The Raman band at 375 cm⁻¹ and the infrared band at 495 cm⁻¹ are assigned to the GT form, while the weak Raman band at 530 cm⁻¹ in the gaseous state and the Raman and infrared bands at 285—292 cm⁻¹ in the liquid and gaseous states are assigned to the GG form. The existence of the GG form is also confirmed by the observation of the Raman and infrared bands at 852 cm⁻¹ which are assigned only to this form.

It is not likely that the GG' form exists, since no Raman or infrared bands to be assigned to this form are detected. Furthermore, the distance between the two terminal methyl groups is too short for the GG' form to be stable.

Ethyl Propyl Ether. This molecule has two C-O axes and a C-C axis which determine the molecular conformation. Accordingly, fourteen rotational isomers listed in Table 1 are derived as possible. Of these, the forms with a sequence of GG' conformation, i.e. TGG', GG'T, GGG', GG'G, and GG'G' are rejected because of the same reason as stated above for the GG' form of methyl propyl ether.

Figure 6 indicates that the Raman and infrared

Table 3. Observed frequencies and vibrational assignments of methyl propyl ether

			Observed frequ					
Gas		Liquid		Gl	ass	Crys	tal	Assignment ^{b)}
R	IR	R	IR	R	IR	R	IR	
						1533VW		Origin unknown
	147536 %	1400747 -L	147034 -L	1486W	140034	1498S	1482M	CH ₂ scis
	1475M, b	1480W, sh	1478M, sh	1475VW, sh	1480M	1476M	1473M, sh	CH ₂ scis
							1469VS	CH ₃ ip-d-deform
462M, vb			1463S, b	1465W, sh	1460M	1463W	1463VS	CH ₃ s-deform
	1460M, vb	1451S, vb				1460W	1457VS, sh	CH ₃ op-d-deform
	ŕ	ŕ	1452S	1454M	1449M	1450VS	1448W, sh	CH ₃ op-d-deform
			1438M, sh	1439W, sh	1438M, sh			CH ₃ ip-d-deform
	1396M	1389VW	1389S	1396VW	1388M	1403VW	1390VS	CH ₂ wag (TT , TG)
	1386M	1303 7 77	1381M, sh	1389VW	1381W, sh	1385VW	1381W	
		107637347	•		-	1303 V VV	1301 **	CH ₃ s-deform (TT), CH ₂ wag (GT, GG)
	1373VW, sh		1374W, sh	1374VW	1371W			CH ₃ s-deform (TG , GT, GG)
	1345VW	1343VW	1345W	1343VW	1344VW			CH ₂ wag (TG , GG)
312VW, sh	1308VW, sh	1305VW, sh	1309VW	1305VW	1307W	1307VW	1308W	CH ₂ wag (TT, GT), CH ₂ twist (GT)
292VW	1292VW	1284W	1287W	1288W	1286W	1289S	1288VW	CH ₂ twist (TT, TG, GG)
272VW, sh	1268VW		1268VW					CH ₂ twist (GT, GG)
							1263VW	Origin unknown
249VW, sh	1251VW	1249VW	1251W	1249VW	1249W	1249VW	1251M	CH ₂ twist (TT, TG)
212VW	1212M					1212VW	1214VS	CH ₃ ip-rock (TT)
	1204M	1204VW	1204VS	1205VW	1205S			CH ₃ ip-rock (TG , GT, GG)
1793/W/ ch	1178VW, sh				1174VW, sh	117337W	1175W	CH ₃ op-rock (TT), CH ₂ rock (GT)
						1173 V VV	1175**	
-	1168VW, sh		1165S	1166VW	1166W	115037747	115077717 1	CH ₃ op-rock (TG , GT, GG)
152VW, sh		1150VW, sh		1151VW, sh		1152VW	1152VW, sh	CH ₃ op-rock (TT)
147W	1148VS, sh	1141VW, sh	-	1144VW	1144M			CH ₃ op-rock (TG)
135VW, sh	1134VS	1131W	1132VS	1131W	1130VS	1126S	1132VS	CC stretch (TT)
115VW	1118VS, sh	1116VW	1119VS	1114VW	1114VS			CO stretch (TG), CH ₃ ip-rock (GT)
	1110VS	1103VW	1104VS, sh					CH ₃ ip-rock (GG)
096VW, sh	1098W, sh	1096VW, sh	1096VS, sh	1100VW	1100VS	1096W	1098VS	CO stretch (TT), CH ₃ ip-rock (TG)
		1077VW, sh	1077VW, sh					CC stretch (GG)
	1062W							CO stretch (GT)
058VW	1052M	1050VW, sh	10508	1050VW, sh	1050S			CC stretch (TG)
047W	1038VW, sh	1040W	1040W, sh	1042W	1042W, sh	1039VS	1042M	CC stretch (TT, GT)
030VW, sh	1030VW, sla	1026VW	1026W					CO stretch (GG)
965VW, sh		958VW	959 M	960VW	960S	961M	960VS	CO stretch (TT)
			942M, sh					CO stretch (GT)
938VW	938M, vb	933W	935S	935W	935S			CO stretch (TG), CH ₃ ip-rock (GG)
		911VW, sh	913M	913VW, sh	912S			CH ₂ rock (TG)
			903M, sh		905M, sh	911VW, sh	909VW	CH ₂ rock (TT)
905W		902W	897W, sh	904W	897VW, sh	902VS	897S	CH ₃ ip-rock (TT), CH ₃ op-rock (GT), CH ₂ ro
								(GG)
879VS		876VS	879W	879VS	879M			CC stretch (TG, GT)
855W		852W	852VW				ma. 13. 6	CC stretch (GG)
759VW	760VW	756VW	759VW	758VW	760W	764VW	764M	CH ₂ rock (TT , TG, GT, GG)
530VW								OCC deform (GG)
508M		505W	505VW, sh	506W	505VW			CCC deform (TG)
			495VW					OCC deform (GT)
447M		443W	441VW	442M	441VW	443M	442VW	COC bend (TT)
422W		418VW	414VW	416VW	414VW	424M	409VW	CCC deform (TT), COC bend (GG)
375VW, sh		375VW, sh						COC bend (GT)
355M		358VW	358VW	357W	357VW			COC bend (TG)
		312VW	305VW, sh	308VW	305VW			OCC deform (TG), CCC deform (GT)
287VW		292VW	285VW					CCC deform (GG)
223VW						223VW		CH ₃ torsion (TT)
		195VW, b		205VW, ь		205VW		OCC deform (TT), CH ₃ torsion (TG)
						131VW	1	
						123W		
						110W		
						87VW	}	Torsions (TT) and lattice vibrations
						76W		
						68VW	İ	
						55M	J	

a) VS: very strong, S: strong, M: medium, W: weak, VW: very weak, vb: very broad, b: broad, sh: shoulder. The broadness of the band shapes in the gaseous state does not always allow us to correlate the individual bands in the liquid state to those in the gaseous state. Only approximate correlations are made in such cases and in other cases of similar situations. b) The band is assigned preferentially to the isomer(s) given by boldface. For the notation and definition of the local symmetry coordinates, see Ref. 26.

Table 4. Observed frequencies and vibrational assignments of ethyl propyl ether

Gas		Liquid		Gla	SS	Cryst	al	Assignment ^{b)}
R	ĪR	R	IR	R	IR	R	IR	
			1490W. sh		1490W, sh	1497W	1484W, sh	CH ₂ scis
		1490W	1487W	1.4003347	1486W		1480M	CH ₂ scis
			1473M	1473VW, sh	1472W, sh	1478VW, sh	1476W, sh	CH ₂ scis
			1464M, sh	1460M, sh	1462W, sh	1468VW	1464M	CH ₃ ip-d-deform
62M, vb	1465M, vb	1458M, vb	1 460M	1457M	1457W	1457M	1457M	CH ₃ op-d-deform
			•	•	1449W, sh	1452W, sh	1456M	CH ₃ ip-d-deform
			1443M		1438W	1447W, sh	1442W	CH ₃ op-d-deform
		1415VW, sh	1408W	14.153/34/	1418VW 1408W	1415VW	1416VW	CH ₂ wag (TTT) CH ₂ wag (TTG, TGT, TGG, GTG)
	1382M		1379S	13 7 9VW	1378M		1378M	CH ₃ s-deform (TTT , TTG, TGT, TGG, GTC CH ₂ wag (TGT, TGG, GTG)
	1366M	1380VW	1370M, sh	1372VW	1368M, sh	1371VW	1370M	CH, s-deform (TTT, TGT, TGG, GTG)
	1356M		1356M	1356VW	1354W	1355VW	1357W	CH ₂ wag (TTT, TTG)
	1344VW, sh	1345VW	1345W	1344VW	1344W			CH ₂ wag (TTG , TGG, GTG)
	19093A7 L	1303VW, sh	1304W	1304VW	1303W	1308VW	1308W	CH ₂ wag (TTT, TGT), CH ₂ twist (TGT)
	1303W, b		1283W	1292VW, sh		1292W	1295VW	CH ₂ twist (TTT, TGG, GTG)
84W, vb	1279W	1277W, b		1285W, sh	1282W			CH ₂ twist (TTG)
0111, 10	12/511	127711, 0	1275W, sh	1276W	1274W, sh	1276W	1274VW	CH ₂ twist (TTT , TTG, TGG)
	1064347 1		1265W	19593/347 -1-	195437347			CH ₂ twist (TGT, GTG)
	1264W, b	1250VW	1252W	1252VW, sh 1246VW	1254 V W, sh 1246W	1245VW	1247W	CH ₂ twist (TTG , TGT, TGG, GTG) CH ₂ twist (TTT)
	1180W, sh		1182M, sh	14 TU V VV	121011	1712 4 44	141/14	CH ₂ twist (TTT) CH ₂ rock (TGT)
70VW, sh	1100 11, 811	1170VW, sh	. 10414, 311		1172W, sh	1172VW	1172W	CH ₂ rock (TTT)
70 7 77, 511	1168M, sh	1165VW, sh	1168M, sh	1170VW, sh	1165W			CH ₂ rock (TTG , TGG), CH ₃ op-rock (GTG)
56W		1154W	1154S	1155 M	1152M	1152M	1155S	CH ₃ ip-rock (TTT, GTG), CH ₂ rock (GTG), op-rock (TTT, TTG, TGT, TGG)
			1133VS	1133VW	1131M, sh			CH ₃ ip-rock (TTG), CO stretch (TGT, TGG)
33W	1135VS, b	1124VW, b	1118VS	1119VW	1117VS			CO stretch (TTG), CH _a ip-rock (TGT, TGG)
10VW	_		1110VS, sh	1110VW, sh	1109W, sh	1110W	1112VS	CO stretch (TTT), CC stretch (TGT)
98VW, sh	1000X L	1099VW	1096S	1098VW	1098W	1101VW, sh	1098VS	CC stretch (TTT), CO stretch (GTG)
85W	1090M, b	1085W	1086S	1085W	1087W			CC stretch (TTG, GTG)
75VW, sh		1075VW, sh	1074M, sh					CC stretch (TGG)
	1059W, sh		1062M	1062VW	1063M	105037147	10505	CC stretch (TTG)
)50VW, b	,	1048VW	1051M	1048VW	1051W	1050VW	1050S	CC stretch (TTT, TGG, GTG)
1 73 73 47	1017347	1040 V W, sn 1017 V W	1042VW, sh 1017W	1017VW	1018W	1020M	1020S	CC stretch (TGT) CC stretch (TTT, TGT)
017VW	1017W 986W	985VW	986M	985VW	985M	102011	10203	CC stretch (TTG), CO stretch (TGG)
990VW, b	962VW, sh	961VW	962W	303 7 77	505141			CO stretch (GTG)
918VW, sh	502 4 44, 511	918VW, sh	920VW, sh	918VW, sh	918VW			CH ₂ rock (TTG , TGG, GTG), CH ₃ op-rock (T
908W, sh		908VW, sh	908VW, sh	908VW, sh	908VW, sh	908VW, sh	906W, sh	CH ₃ ip-rock (TTT)
902W, sh		902W	902W	903VW	902W	901W	900M	CH ₃ op-rock (TTT)
	885W, vb	883VS	302 VV	885VS	896W, sh			CO stretch (TTG), CH3 ip-rock (TGT, GTG
884VS		003 V 3	883M	003 V 5	884M	885W	883M	CO stretch (TTT), CC stretch (TTG, GTG)
871W, sh		871VW, sh						CC stretch (TGG)
849W		844W	846W					CO stretch (TGT), CH ₃ ip-rock (TGG)
820VW, sh	820VW	820VW, sh	818VW	819VW	818VW	826VW	826VW	CH ₂ rock (TTT , TGT), CH ₃ op-rock (TTC
•		•			768VW, sh	769VW	767W	TGG, GTG) CH ₂ rock (TTT , TGG, GTG)
761VW	760VW, b	761VW	762VW	763VW	762W	100 1 11	70,11	CH ₂ rock (TTG)
753VW, sh	-	753VW, sh	753VW, sh					CH ₂ rock (TGT)
		546VW, sh						COC bend (TGT), CCC deform (TGG)
520VW		518VW	518VW					OCC deform (GTG)
496VW, sh	40037347	496VW, sh	494VW	498VW, sh	495VW	498VW	494VW	OCC deform (TTT)
488VW	490VW	489VW	486VW, sh	490VW	488VW, sh			OCC deform (TTG)
439M	439VW	439M	438VW	439M	438VW			COC bend (TTG, TGG)
408M	408VW	410M	409VW	410M	408VW	410VS	409VW	COC bend (TTT), OCC deform (GTG)
360W		363VW	361VW					OCC deform (TGT)
				335VW	331VW			CCC deform (TTG), OCC deform (TGG), 0 bend (GTG)
328W		330VW	328VW					CCC deform (TGT)
		• • •		314VW	315VW	314VW	315VW	CCC deform (TTT), OCC deform (GTG)
				* *	••	266VW	266VW	CH ₃ torsion (TTT)
				257VW				CH ₃ torsion (TTG)
						237VW		CH ₃ torsion (TTT)
				195VW, sh	1	199VW		CH2CH2 torsion (TTT)
				165VW		160VW)
						147VW, sl		
						121VW, sl	h	1
						103VW		OCC bend (TTT), torsions (TTT), and latt
						80W, sh		vibrations
						78M 60VW		
								·

a), b) See a) and b), respectively, of Table 3.

Table 5. Observed frequencies and vibrational assignments of butyl methyl ether

Gas Liquid				Glass Crystal				A -= : b)
	~			~		Crys		Assignment ^{b)}
R	IR	R	IR	R	IR	R	IR	
		1400347 1-	1480M, sh	1486W	1484W, sh	1498VW 1486W	1482M	CH ₂ scis
		1480W, b	1474M ab		1480M		1475W, sh	CH ₂ scis CH ₃ ip-d-deform
			1474M, sh 1467S, sh	1470W, sh	1474W, sh 1464S, sh	1477W 1463VW, sh	1471S 1462S	
457M, vb	1460M, vb		1461S	1461S, sh	1460S	1460W, sh	1458S, sh	CH ₂ scis
		1452S, b	1452S		1452S	1452W	1452W, sh	CH ₃ s-deform, CH ₃ op-d-deform CH ₃ op-d-deform
		11020, 5	1444M, sh	1452S	1447M, sh	1448W, sh	1442W, sh	CH ₃ ip-d-deform
			1432W	1434W	1430W, sh	111011, 011		Origin unknown
		1395VW	1395W, sh	1395VW	1395W, sh	1395VW	1395S	CH ₂ wag (TTT, TTG)
390VW, ь	10053 6 1	1385VW, sh		1385VW	1385M			CH ₂ wag (TGT, GTT, GTG)
	1385M, b	1378VW, sh	13 79M, sh	1378VW	1376M, sh	1381VW	1377M	CH ₃ s-deform (TTT, TGT, TTG, GTT, GTG)
367VW		1367VW	1367VW, sh	1368VW	1367VW, sh	1364VW	1366VW	CH ₂ wag (TTT , TGT)
	1345VW	1342VW, sh						CH ₂ wag (TTG, GTT, GTG)
800W	1312VW	1318VW, sh						CH ₂ wag (TTG, GTG), CH ₂ twist (GTT)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1304VW	1304W	1305VW	1305M	1304W	1305VW		CH ₂ twist (TTT , TGT, GTG)
		1286VW, sh		1286VW, sh	1287VW, sh		1290VW	CH ₂ twist (TTT, GTT), CH ₂ wag (TGT)
265VW, sh	1260W	1270VW, sh		105037347	1271W, sh	1272VW, sh	1276W	CH ₂ wag (TTT , GTT), CH ₂ twist (TTG)
, ,		1260VW	1260W	1259VW	1261W			CH ₂ twist (TGT , TTG, GTG)
231VW, sh	1230W	1233VW	1237W	1236VW	1236M	100737347	100137347	CH ₂ twist (TGT , TTG, GTT, GTG)
,	1208M	1223 v vv, sn	1227VW, sh	1223 v vv, SN	144/ W, SN	1227VW 1206VW	1231VW 1214S	CH ₂ twist (TTT)
204VW	1208M 1200M	1200VW	1200S	1202VW	1202VS	1400 V VV	14173	CH ₃ ip-rock (TTT) CH ₃ ip-rock (TGT , TTG, GTT, GTG)
	1200M 1172M, sh	1200 V W 1171 V W, sh		1172VW, sh		1172VW	1173W	CH ₂ rock (TTT , GTT, GTG), CH ₃ op-rock (TTC
	1162M, sh	1162VW, sh		1165VW	1164M		11,011	CH ₃ op-rock (TGT , GTT, GTG)
150W, sh	1150S, sh	1148VW, sh		1149VW, sh		1149VW	1151VW, sh	CH ₃ op-rock (TTT , TTG)
42W	11000, 511	1142W	1144S, sh	1145W	1143S			CH ₂ rock (TGT), CH ₃ op-rock (TTG)
31W, sh	1135VS	1130W	1132VS	1130W	1132VS, sh	1126W	1132VS	CC stretch (TTT)
20W, sh		1121W, sh	1120VS	1120W	1122VS			CC stretch (TGT, TTG), CH ₃ ip-rock (GTT)
115W	1112S, sh	1115W	1112VS	1112W	1112VS			CO stretch (TGT)
03VW, sh	1104M, sh	1103VW, sh	1103S, sh	1103VW, sh	1103VS, sh	1103VW	1107VS	CO stretch (TTT), CH ₃ ip-rock (GTG)
95VW, sh	1095M, sh	1098VW, sh	1098S, sh					CO stretch (TTG)
067VW	1061M	1065VW	1066M	1063VW	1065W	1065W	1067VW	CC stretch (TTT, TTG, GTG), CO stretch (GT
	1001111							GTG)
055VW		1054VW	1055W	1053VW	1053S	100414	10003.5	CC stretch (TGT, GTT)
028VW		1022VW, sh		1025VW, sh		1024W	1026M	CC stretch (TTT)
)19W	1016W	1016W	1017W	1019W	1019S			CC stretch (TGT, GTT)
		991VW	990W	991VW	989VW			Origin unknown
973W, sh		970W, sh		970VW, sh				CH ₃ ip-rock (TGT , TTG), CH ₃ op-rock (GTC CC stretch (GTG)
966W		962W	960M	963VW	961S	962M	962VS	CO stretch (TTT), CH ₂ rock (TTG)
955VW, sh	954W, b	952W, sh	952M, sh					CO stretch (TTG), CH ₃ op-rock (GTT)
	•					945VW, sh	947W	CH ₃ op-rock (TTT)
945W		942W	941M	940W	938S			CH ₃ op-rock (TGT)
926VW, sh		924VW	920W					CO stretch (GTT, GTG)
398VW	895VW	897VW	896W	899VW	895W	900VW	895S	CH ₃ ip-rock (TTT), CC stretch (GTT, GTG)
80VW		879VW	877VW, sh					CC stretch (TTG)
340VS	838W	839VS	838W, sh	841VS	838W			CO stretch (TGT)
31W, sh	828W	829M, sh	828W	828W	827S			CH ₂ rock (TGT)
320W, sh		818W	0107777	01077717	01077***	010377-7	01017	CH ₂ rock (TTG)
	813VW, sh	810W	813VW, sh	813VW, sh	813VW	813VW	813VW	CH ₂ rock (TTT , TTG, GTT, GTG)
791VW, sh	75057347	791VW, sh	75637347					Other isomers
	753VW		756VW			747VW	745M	CH ₂ rock (GTG, TTG)
39VW	740VW	740VW	738VW	740VW	739W	/T/ V VV	147141	CH ₂ rock (TTT , GTT) CH ₂ rock (TGT)
550VW, sh	/ TU V VV	549VW	545VW	551VW	549VW			CCC deform (TGT)
525VW		525VW	529VW	001 7 17	0.0111			Other isomers
509VW		509VW	505VW, sh					COC bend (GTG)
194VW		496VW	492VW	495VW	494VW	497VW	494VW	COC bend (TTT), OCC deform (GTT)
			**	•		485VW	**	Origin unknown
60VW, sh		460VW	4503.7547					CCC deform (TTG)
49VW		449VW	459VW					COC bend (TTG)
			425VW					Other isomers
		408VW	410VW					CCC deform (GTT, GTG)
83W		387W	386VW	385W	383VW	391VS	382VW	OCC deform (TTT)
349S		352M	352VW, sh	352W	352VW			COC bend (TGT, GTT), OCC deform (GTG)
222347		326W	322VW	323VW	324VW, sh	324W	322 VW	CCC deform (TTT, TTG)
323W		J40 YY	344 ¥ ¥¥	315VW, sh	315VW			OCC deform (TGT)
				275VW	275VW			CCC deform (TGT)
		250VW, vb		250VW		247VW	252VW	CH ₃ torsion (TTT, TTG)
						184VW)	
						170VW		
						108VW		CCC deform (TTT), torsions (TTT), and latti
							,	
						90M, sh	ſ	
						90M, sn 86M 57VW	-	vibrations (222), and late

a), b) See a) and b), respectively, of Table 3.

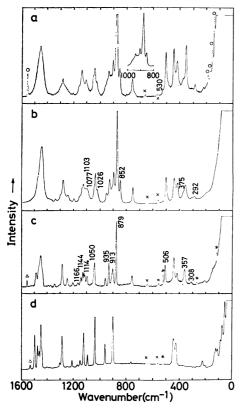


Fig. 1. Raman spectra of methyl propyl ether.

- a: Gas (room temperature),
- b: liquid (room temperature),
- c: glass (liquid nitrogen temperature),
- d: crystal (liquid nitrogen temperature).

Following symbols are used in Figs. 1—9. *: emission line of Ar⁺, \bigcirc : rotational or vibrational Raman band of O₂ or N₂, \square : librational infrared band of H₂O, \times : impurity, \triangle : origin unknown.

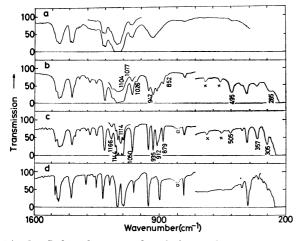


Fig. 2. Infrared spectra of methyl propyl ether.a: Gas, b: liquid, c: glass, d: crystal.The symbols are explained in the caption of Fig. 1.

bands observed in the crystalline state are explained only by the calculated result for the TTT form. The additional bands observed in the glassy state are assigned to the TTG form on the basis of the calculated frequencies.

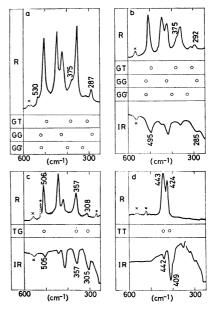


Fig. 3. Observed and calculated frequencies of methyl propyl ether in the 600—250 cm⁻¹ region.
a: Gas, b: liquid, c: glass, d: crystal.
The symbols are explained in the caption of Fig. 1.

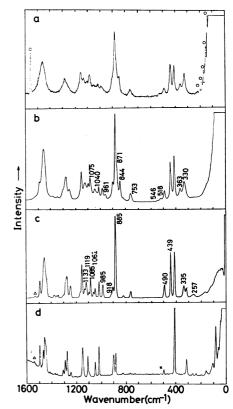


Fig. 4. Raman spectra of ethyl propyl ether.

- a: Gas (room temperature),
- b: liquid (room temperature),
- c: glass (liquid nitrogen temperature),
- d: crystal (liquid nitrogen temperature).

The symbols are explained in the caption of Fig. 1.

In the liquid state, several new Raman and infrared bands appear. The temperature dependence of the

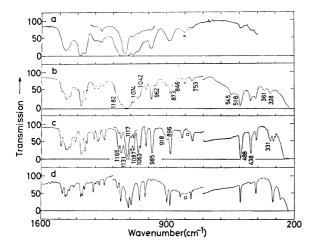


Fig. 5. Infrared spectra of ethyl propyl ether.a: Gas, b: liquid, c: glass, d: crystal.The symbols are explained in the caption of Fig. 1.

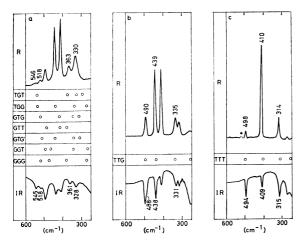


Fig. 6. Observed and calculated frequencies of ethyl propyl ether in the 600—250 cm⁻¹ region.
a: Liquid, b: glass, c: crystal.

The symbols are explained in the caption of Fig. 1.

spectra and the calculated results show that the liquidstate spectra are explained by the TGT, TGG, and GTG forms in addition to the TTT and TTG forms which persist in the glassy state.

Existence of the GTT and GTG' forms is uncertain, since all of their calculated frequencies are almost coincident with those of the other forms mentioned above. The GGT and GGG forms do not seem to exist in the liquid state, since no bands are observed around their characteristic frequencies of about 470 cm⁻¹.

Butyl Methyl Ether. This molecule has two C-C axes and a C-O axis associated with the rotational isomerism. Accordingly, fourteen isomers listed in Table 1 are derived as possible. The GG'T, GG'G and GG'G' forms are unlikely because of the same reason as stated for methyl propyl ether. However, the TGG' and GGG' forms are not ruled out, since unlike the GG' sequence of the CO-C-CC part in methyl propyl ether or ethyl propyl ether, the GG' sequence of the OC-C-CC part is not expected to give rise to very large steric hindrance.

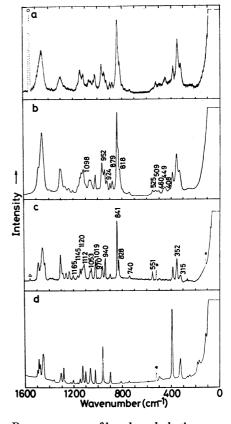


Fig. 7. Raman spectra of butyl methyl ether.
a: Gas (room temperature),
b: liquid (room temperature),
c: glass (liquid nitrogen temperature),
d: crystal (liquid nitrogen temperature).
The symbols are explained in the caption of Fig. 1.

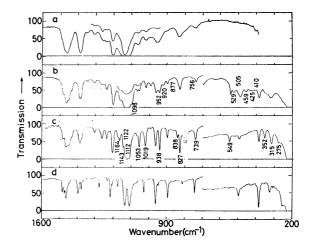


Fig. 8. Infrared spectra of butyl methyl ether.a: Gas, b: liquid, c: glass, d: crystal.The symbols are explained in the caption of Fig. 1.

The comparison with the calculated results (Fig. 9) shows that the crystalline-state spectra can be explained only by the TTT form and the glassy-state spectra by the TTT and TGT forms. The spectra in the liquid state have several new bands. Their frequencies are close to the frequencies calculated for the TTG, GTT, and GTG forms. In the liquid-state infrared spectrum,

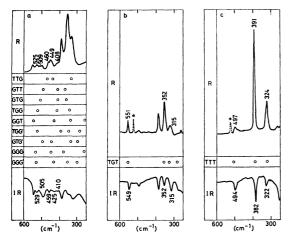


Fig. 9. Observed and calculated frequencies of butyl methyl ether in the 600—250 cm⁻¹ region.
a: Liquid, b: glass, c: crystal.
The symbols are explained in the caption of Fig. 1.

several weak bands are observed in the region 450—400 cm⁻¹, which are not assignable to the isomers mentioned above. Accordingly, there are possibilities that other forms such as TGG, GGT, TGG', GTG', GGG, and GGG' isomers exist in the liquid state. The Raman band at 525 cm⁻¹ and the infrared band at 529 cm⁻¹ are assigned to either one or both of the TGG and TGG' forms.

Rotational Isomerism. In Table 6, the rotational isomerism of the ethers studied in this work is summarized, together with that of ethyl methyl ether and diethyl ether which has been established in earlier studies. 7,9-11) The symbol \tilde{G} is used to specialize the gauche conformation about the C-C axis directly adjoining the O-C axis.

Discussion

The following results were obtained for the three ethers in common. (1) Only the all-trans form exists in the crystalline state. (2) An additional form coexists in the glassy state. This form takes the gauche conformation (\tilde{G}) about the OC-CC axis and the trans conformation about other axes. (3) More forms exist

in the liquid state than in the glassy state. The temperature dependence of the Raman intensities indicates that the additional forms are much less stable than the two forms which persist in the glassy state, while the energy difference between the latter two is not appreciable. (4) It is likely that the molecules in the gaseous state take the same conformations as in the liquid state.

The stability of the *trans* conformation over the *gauche* conformation may be explained, in a way similar to the case of paraffins, in terms of the weaker nonbonded interactions. In fact, it has been shown that the *trans* conformation about the CO-CC axis is more stable than the *gauche* conformation by 1.1—1.5 kcal/mol as obtained for ethyl methyl ether^{10a,11a,11c)} and diethyl ether.^{9,10c)} The existence of the all-*trans* form in the crystal is ascribable also to the requirement of the molecular packing which is determined primarily by intermolecular forces.

In addition to the all-trans form, the second isomer with the \tilde{G} conformation exists in the glassy state of the three ethers at liquid nitrogen temperature. This isomer was found to be as stable as the all-trans form in the liquid state. The stability of the \tilde{G} conformation is also shown by the fact that ethylene glycol dimethyl ether $CH_3O-CH_2-CH_2-OCH_3$ takes the $T\tilde{G}T$ conformation in the crystalline state.^{7,23)} Thus, it is now established that the \tilde{G} conformation (gauche about the OC-CC or OC-CO axis) is much more stable than the gauche conformation about other axes such as CC-CC and CO-CC.

The stability of the \tilde{G} conformation is understood in the following way by taking the case of the C_1 – C_2 – C_3 – C_4 – C_5 bond system. When the C_1 O– C_2 C $_3$ or C_2 C $_3$ – C_4 C $_5$ axis takes the G conformation, appreciable repulsive forces are expected between the nonbonded hydrogen atoms attached to C_1 and C_3 , or between those attached to C_2 and C_5 . On the other hand, the \tilde{G} conformation about the OC_2 – C_3 C $_4$ axis does not give rise to such forces, since the hydrogen atoms attached to C_4 have no counterpart hydrogen atoms. The absence of this type of nonbonded interaction is suggested to be one of the principal factors to stabilize the \tilde{G} conformation.

In connection with the stable \tilde{G} conformation, it is important to examine the structure of polyethers.^{12,13)}

Table 6. Rotational isomers of the ethers

			O. Itominomizabe		
	CH ₃ OCH ₂ -CH ₃ ^{a)}	CH ₃ CH ₂ OCH ₂ - CH ₃ ^{b)}	CH ₃ OCH ₂ - CH ₂ CH ₃	CH ₃ CH ₂ OCH ₂ - CH ₂ CH ₃	$\mathrm{CH_3OCH_2CH_2} ext{-}$ $\mathrm{CH_2CH_3}$
Gas	T G	TT TG	TT TĞ GT GĞ	TTT TTĞ TGT TGĞ GTĞ (GTT) (GTĞ')	TTT TĞT TTG GTT GTG (TĞG) (GĞT) (TĞG') (GTG') (GĞG) (GĞG')
Liquid	T G	TT TG	TT TĞ GT GĞ	$\begin{array}{ccc} \mathbf{TTT} & \mathbf{TT\tilde{G}} \\ \mathbf{TGT} & \mathbf{TG\tilde{G}} & \mathbf{GT\tilde{G}} \\ \mathbf{(GTT)} & \mathbf{(GT\tilde{G}')} \end{array}$	TTT TĞT TTG GTG (TĞG) (GĞT) (TĞG') (GĞG) (GĞG')
Glass Crystal	T	TT	TT TĞ TT	TTT TTĞ TTT	TTT TĞT TTT

The isomers given by boldface are confirmed to exist. The existence of the isomers in parentheses is uncertain. For more details, see text.

a) Refs. 7, 10a, 10b, 11, and 21. b) Refs. 7, 9, 10b, 10c, and 22.

It has been shown that poly(oxyethylene) ($-\mathrm{OCH_2-CH_2-}$)_n and poly(oxytrimethylene) ($-\mathrm{OCH_2CH_2CH_2-}$)_n have several crystal modifications. In the most stable modification, the molecule takes the TGT conformation for the series of O-C-C-O bonds in the former polymer and the TGGT conformation for the series of O-C-C-C-O bonds in the latter polymer. In other modifications, the poly(oxyethylene) molecule takes the TTT conformation, and the poly (oxytrimethylene) molecule takes the TTGTTTG'T and (TTTT)₂ conformations for the series of O-C-C-C-C-C-C-C-O bonds. These facts suggest that the G conformation plays an important role in stabilizing molecular conformations of crystalline polymers.

References

- 1) S. Mizushima, Y. Morino, and S. Nojiri, Sci. Pap. Inst. Phys. Chem. Res. Tokyo, 29, 63 (1936).
- 2) S. Mizushima, "Structure of Molecules and Internal Rotation," Academic Press, New York (1954).
- 3) Y. Morino and E. Hirota, Ann. Rev. Phys. Chem., 20, 139 (1969).
 - 4) E. B. Wilson, Chem. Soc. Rev., 1, 293 (1972).
- 5) S. Mizushima, T. Shimanouchi, I. Harada, Y. Abe, and H. Takeuchi, Can. J. Phys., 53, 2085 (1975).
- 6) T. Shimanouchi, H. Matsuura, Y. Ogawa, and I. Harada, J. Phys. Chem. Ref. Data., to be submitted.
- 7) R. G. Snyder and G. Zerbi, *Spectrochim. Acta*, **23A**, 391 (1967).
- 8) A. D. H. Clague and A. Danti, Spectrochim. Acta, 24A, 439 (1968).
- 9) H. Wieser, W. G. Laidlaw, P. J. Krueger, and H. Fuhrer, Spectrochim. Acta, 24A, 1055 (1968).
- 10) a) J. P. Perchard, Spectrochim. Acta, **26A**, 707 (1970); b) J. P. Perchard, J. Mol. Structure, **6**, 457 (1970); c) J. P. Perchard, J. C. Monier, and P. Dizabo, Spectrochim. Acta, **27A**, 447 (1971).

- 11) a) T. Kitagawa and T. Miyazawa, *Bull. Chem. Soc. Jpn.*, **41**, 1976 (1968); b) T. Kitagawa, K. Ohno, H. Sugeta, and T. Miyazawa, *ibid.*, **45**, 969 (1972); c) T. Kitagawa, K. Kusaki, and T. Miyazawa, *ibid.*, **46**, 3685 (1973).
- 12) T. Miyazawa, K. Fukushima, and Y. Ideguchi, J. Chem. Phys., **37**, 2764 (1962).
- 13) T. Yoshihara, H. Tadokoro, and S. Murahashi, J. Chem. Phys., 41, 2902 (1964); H. Tadokoro, Y. Takahashi, Y. Chatani, and H. Kakida, Makromol. Chem., 109, 96 (1967); Y. Takahashi, I. Sumita, and H. Tadokoro, J. Polym. Sci. Polym. Phys., 11, 2113 (1973); Y. Takahashi and H. Tadokoro, Macromolecules, 6, 672 (1973).
- 14) P. J. Flory, "Statistical Mechanics of Chain Molecules," Interscience, New York (1969).
- 15) T. Shimanouchi, Discuss. Faraday Soc., 1970, 60.
- 16) S. Mizushima and T. Shimanouchi, J. Am. Chem. Soc., **86**, 3521 (1964).
- 17) F. Inagaki, M. Sakakibara, I. Harada, and T. Shimanouchi, Bull. Chem. Soc. Jpn., 48, 3557 (1975).
- 18) I. Harada, H. Takeuchi, M. Sakakibara, H. Matsuura, and T. Shimanouchi, *Bull. Chem. Soc. Jpn.*, to be published.
- 19) T. Shimanouchi, I. Nakagawa, C. Tanaka, I. Suzuki, H. Takahashi, T. Fujiyama, Y. Abe, T. Ueda, M. Mikami, M. Oka, A. Y. Hirakawa, and A. Kurokawa, Symposium on Molecular Structure, Osaka, 1966.
- 20) H. Matsuura and T. Miyazawa, Bull. Chem. Soc. Jpn., 41, 1798 (1968).
- 21) M. Hayashi and K. Kuwada, J. Mol. Structure, 28, 147 (1975).
- 22) M. Hayashi and K. Kuwada, Bull. Chem. Soc. Jpn., 47, 3006 (1974).
- 23) Y. Ogawa, M. Ohta, M. Sakakibara, H. Matsuura, I. Harada, and T. Shimanouchi, to be published.
- 24) R. F. Schaufele, Trans. New York Acad. Sci., 30, 69 (1967).
- 25) J. L. Koenig and A. C. Angood, J. Polym. Sci., Pt. A-2, 8, 1787 (1970).
- 26) T. Shimanouchi, "Tables of Molecular Vibrational Frequencies," Consolidated Vol. 1, U. S. Govt. Printing Office, No. C13.48: 39 (1972).